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a b s t r a c t

Let A be an Abelian group, n ≥ 3 be an integer, and ex(n, A) be
the maximum integer such that every n-vertex simple graph with
at most ex(n, A) edges is not A-connected. In this paper, we study
ex(n, A) for |A| ≥ 3 and present lower and upper bounds for 3 ≤

|A| ≤ 4 and an upper bound for |A| ≥ 5.
© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Graphs considered in this paper are finite, undirected, and loopless. A simple graph is a graph
without multiple edges. The vertex set and edge set of G are denoted by V (G) and E(G) or simply V
and E if there is no confusion. We use Kn and Wn to denote the complete graph with n vertices and
the wheel on n + 1 vertices, respectively. For a subgraph H of G, let G/H be the subgraph obtained
from G by contracting all the edges in H . An orientation D of a graph G is a directed graph obtained by
assigning a direction to each edge in E(G). For an orientation D of G and a vertex v ∈ V (G), we use
E+(v) (resp., E−(v)) to denote the set of edges with tails (resp., heads) at v. Let A be an Abelian group.
The order of A is denoted as |A|.

The degree of the vertex v ∈ V (G) is the number of edges incident with it, denoted by dG(v)
(or simply d(v)). A k-vertex, (≥k)-vertex or (≤k)-vertex is a vertex of degree k, at least k, or at
most k, respectively. A k-cycle is a cycle with k vertices and a k-path is a path with k edges. Let
π = (d1, . . . , dn) be a nonincreasing integer sequence. An i-element of π is a term of π whose value
is i. If there are r i-elements in π , sometimes we use ir instead of (i, . . . , i) where i repeats r times.
A nonincreasing positive integer sequence π = (d1, d2, . . . , dn) is graphic if there is a simple graph
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whose degree sequence isπ ; and such a graph is called a realization ofπ . Let σ(π) = d1+d2+· · ·+dn
be the degree sum of π .

Let f : E(D) → A be a mapping. The boundary of f is the mapping ∂ f : V (D) → A, where
∂ f (v) =


e∈E+(v) f (e) −


e∈E−(v) f (e) for each vertex v ∈ V (D). Note that


v∈V (D) ∂ f (v) = 0.

We say that D is A-connected if, for every mapping p : V (D) → A with


v∈V (D) p(v) = 0, there exists
a mapping f : E(D) → Awith boundary ∂ f = p such that f is nowhere zero, that is, f (e) ≠ 0 for every
edge e ∈ E(D). We say that D admits a nowhere-zero A-flow if there is a nowhere-zero f such that ∂ f
is identically zero. A graphic sequence is said to have an A-connected realization if π has a realization
that is A-connected.

As indicated in [6], the existence of a nowhere-zero mapping f with a specified boundary depends
only on the underlying undirected graph and not on the orientation of the edges, since reversing an
edge and negating the value f on it does not change the contribution to the boundary at the endpoints.
Accordingly, we say that an undirected graph is A-connected (or admits a nowhere-zero A-flow) if it is
A-connected (or admits a nowhere-zero A-flow, respectively) under some orientation.

Note thatwhether or notG admits a nowhere-zeroA-flowonly depends on the order ofA. Tutte [15]
proved that a graph G admits a nowhere-zero k-flow if and only if it admits a nowhere-zero A-flow
for any Abelian group A with |A| = k. Major open problems in this area are Tutte’s celebrated 3-,
4-, and 5-flow conjectures. Readers are referred to Zhang [16] for in-depth accounts.

Unlike for group flow, it is unknown whether the structure of the group A plays any role in
A-connectivity. In fact, it is an open problem to determine whether any Z4-connected graph is Z2 ×Z2-
connected, or vice versa.

The concept of A-connectivity was introduced by Jaeger et al. [6] as a generalization of nowhere-
zero flows. A-connected graphs are contractible configurations of A-flow and play an important role
in the study of group flows because of the following: if H is A-connected, then any supergraph G of H
(i.e. G containing H as a subgraph) admits a nowhere-zero A-flow if and only if G/H does.

Group connectivity is stronger than the existence of nowhere-zero flows. For example,
2-flowability is equivalent to being Eulerian, but K1 is the only Z2-connected graph. Nowhere-zero
flows satisfy a monotonicity condition like k-colorability: if a graph admits a nowhere-zero k-flow,
then it admits a nowhere-zero h-flow for any integer h ≥ k. On the other hand, Jaeger et al. [6] showed
that group connectivity is not monotone. For example, the graph consisting of four internally disjoint
3-paths with common endpoints is Z5-connected but not Z6-connected.

Jaeger et al. [6] generalized Seymour’s 6-flow theorem and proved that every 3-edge-connected
graph is A-connected with |A| = 6 and made the following interesting conjectures.

Conjecture 1 (Jaeger et al. [6]).

(a) Every 3-edge-connected graph is Z5-connected.
(b) Every 5-edge-connected graph is Z3-connected.

Note that the conjectures above are stronger than Tutte’s 5-flow/3-flow conjectures. We refer the
readers to [2–4,9–12,17] for recent results on those conjectures.

A sparse graph may still admit a nowhere-zero k-flow even for k = 2, 3, 4—because every cycle
admits a nowhere-zero 2-flowwhile it is not A-connected if |A| is not big enough. So sufficient density
is a necessary condition for a graph to be A-connected for each Abelian group with |A| ≥ 3. This
observation motivates us to study the following extremal problem for group connectivity: for an
Abelian group A with |A| ≥ 3 and an integer n ≥ 3, find ex(n, A), where ex(n, A) is the maximum
number such that every n-vertex simple graph with at most ex(n, A) edges is not A-connected. Since
the only Z2-connected graph is K1, there is no need to consider the case where |A| = 2.

Remarks. (1) For 2 ≤ n < |A|with |A| ≥ 3, ex(n, A) = n−1. This is because the cycle with n vertices
is A-connected and any simple graph with n vertices and at most n − 1 edges is either a tree or a
disconnected graph, and neither is A-connected.

(2) By Lemma 8(a), it is easy to see that there is an A-connected graph with t edges for each integer t
with ex(n, A) + 1 ≤ t ≤

n(n−1)
2 .
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In the paper, we prove the following result for ex(n, A).

Theorem 2. For an integer n ≥ 6, 3n/2 ≤ ex(n, Z3) ≤ 2n − 3.

Note that K3 and K4 are not Z3-connected. For n = 5, the even wheel W4 with five vertices (eight
edges) is Z3-connected and so is any supergraph of W4. Clearly any graph with five vertices and at
most seven edges is not Z3-connected. Therefore, ex(3, Z3) = 3, ex(4, Z3) = 6, and ex(5, Z3) = 7.

Theorem 3. Let A be an Abelian group with |A| = k ≥ 5 and n ≥ k be an integer with n − 1 ≡

t(mod k − 2). Then

ex(n, A) <


(n − 1)(k − 1)

k − 2
, if t = 0;

(n − 1 − t)(k − 1)
k − 2

+ t + 1, otherwise.

Theorem 4. Let A be an Abelian group with |A| = 4 and n ≥ 4 be an integer. Then (4n − 1)/3 ≤

ex(n, A) ≤ ⌊(3n − 4)/2⌋.

It is obvious that the upper bound in Theorem 4 is a special case of Theorem 3. When |A| = 4,
we will prove a slightly more general result (Theorem 5), which concludes that any simple graph G
with minimum degree at least 2 and with at least ex(n, A) + 1 edges either is A-connected or there is
another A-connected simple graph H with the same degree sequence as G.

Theorem 5. Let A be an Abelian group with |A| = 4, n ≥ 3 be an integer, and π = (d1, d2, . . . , dn) be a
graphic sequencewith d1 ≥ d2 ≥ · · · ≥ dn ≥ 2. If the degree sumof π, σ(π) = d1+d2+· · · dn ≥ 3n−3,
thenπ has a realization that is A-connected. In particular, if dn ≥ 3, then it has an A-connected realization.

The question of whether a degree sequence has a realization with certain properties has been
extensively studied. A surprising application [14] of graph realization with 4-flows has been found in
the design of critical partial Latin squares, which led to the proof of the so-called simultaneous edge-
coloring conjecture of Keedwell [7] and Cameron [1]. All graphic sequences which have a realization
admitting a nowhere-zero 3-flow or 4-flow are characterized in [13,14] respectively.

Note that Theorem 5 together with Conjecture 7(b) (if it is true) would characterize all graphic
sequences having an A-connected realization with |A| = 4. We would like to propose the following
conjecture.

Conjecture 6. Let A be an Abelian group with |A| = 4 and π = (d1, d2, . . . , dn) be a graphic sequence
with d1 ≥ · · · ≥ dn ≥ 2. π has an A-connected realization if and only if the degree sum of π, σ(π) ≥

3n − 3.

For the graphs constructed in the proofs of Theorems 2–4, removing one edge from each of them
results in a graph which is not A-connected. So, we believe that the following is true.

Conjecture 7. Let A be an Abelian group. Then:
(a) ex(n, Z3) = 2n − 3 where n ≥ 5.
(b) ex(n, A) = ⌊(3n − 4)/2⌋ where n ≥ 3 and |A| = 4.
(c)

ex(n, A) =


(n − 1)(k − 1)

k − 2
− 1, if t = 0;

(n − 1 − t)(k − 1)
k − 2

+ t, otherwise.

where n ≡ 1(mod k − 2) and |A| = k ≥ 5.

This paper is organized as follows: in Section 2, we present some useful lemmas; in Section 3, we
give a proof of Theorem 2; in Section 4, we give a proof of Theorems 3 and 4; in Section 5, we prove
Theorem 5.
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2. Useful lemmas

Lemma 8. Let A be an Abelian group. Then:
(a) (Lai [9]) A k-cycle is A-connected if and only if |A| ≥ k + 1.
(b) (Lai [9]) Let H be an A-connected subgraph of G. Then G is A-connected if and only if G/H is

A-connected.
(c) (Fan et al. [4]) Every wheel with odd number of vertices is Z3-connected.

The following lemma provides a method for determining whether a graph is Z3-connected:
recursively remove 2-vertices; then the resulting graph is Z3-connected if and only if the original
one is.

Lemma 9 (Zhang et al. [17]). Let G be a graph and v ∈ V (G) with dG(v) = 2. Then G is Z3-connected if
and only if G − v is Z3-connected.

The next corollary follows immediately from Lemma 9.

Corollary 10. Let G be a Z3-connected graph. Then G contains no adjacent 2-vertices.

For A-connectivity with |A| ≥ 4, we have the following:

Lemma 11. Let G be a graph and A be an Abelian groupwith order |A| = k ≥ 4. Let G′ be a graph obtained
from G and a (k−1)-path, say u0u1 · · · uk−1, by identifying u0 with a vertex v0 of G and uk−1 with a vertex
vk−1 of G. Then G is A-connected if and only if G′ is A-connected.

Proof. Suppose that G is A-connected. Then G′/G is a (k − 1)-cycle which is A-connected by
Lemma 8(a). Since G is A-connected, by Lemma 8(b), G′ is A-connected.

Assume that G′ is A-connected; we will prove that G is A-connected as well. We first show that it is
true if v0 = vk−1. If v0 = vk−1, then G′ has a (k−1)-cycle such that we can obtain G by contracting this
(k − 1)-cycle. By Lemma 8(a) and (b), G is A-connected. In the following we assume that v0 ≠ vk−1.

For convenience, let A = {a1, a2, . . . , ak} with ak = 0. Define w1 = a1, and for 2 ≤ i ≤ k − 2, let
wi = ai − ai−1. Note that

j
i=1 wi = aj for 1 ≤ j ≤ k − 2 and hence {

j
i=1 wi|1 ≤ j ≤ k − 2} =

A \ {0, ak−1}.
For b ∈ Z(G, A) with


v∈V (G) b(v) = 0, we define b′

∈ Z(G′, A) with


v∈V (G′) b
′(v) = 0 as

follows:

b′(x) =


b(x) if x ∈ V (G) \ {v0, vk−1},
b(x) + (−ak−1) if x = u0 = v0,
b(x) + ak−1 + (−ak−2) if x = uk−1 = vk−1,
wi if x = ui, 1 ≤ i ≤ k − 2.

Let D be any orientation of G. Extend this orientation to an orientation of D′ of G′ by orienting the
edge uiui+1 from ui to ui+1 for 0 ≤ i ≤ k − 2.

Since G′ is A-connected, there exists a nowhere-zero flow f ′
: E(D′) → A such that ∂ f ′

= b′. Then
f ′(ujuj+1) = f ′(u0u1) +

j
i=1 wi = f ′(u0u1) + aj ≠ 0 for 1 ≤ j ≤ k − 2. Then f ′(u0u1) ≠ −aj for

1 ≤ j ≤ k − 2. Since aj ≠ 0, f ′(u0u1) ≠ 0 and f ′(ujuj+1) = f ′(u0u1) + aj for 1 ≤ j ≤ k − 2, then
f ′(usus+1) ≠ f ′(utut+1) for any 0 ≤ s < t ≤ k − 2. This implies that

k−2
j=0 {f ′(ujuj+1)} = A \ {0} =k−1

j=1 {−aj}. But f ′(u0u1) ≠ −aj for 1 ≤ j ≤ k − 2. Therefore f ′(u0u1) = −ak−1. This implies that
f ′(uk−2uk−1) = −ak+1 + ak−2. Let f be the restriction of f ′ on D. Then f : E(D) → A and ∂ f = b. This
completes the proof. �

The following lemma provides some structure for A-connected graphs with |A| = 4.

Lemma 12. Let G be an A-connected simple graphwith |A| = 4. Then either G belongs toK3 or G contains
no vertex whose neighbors are all 2-vertices, where K3 is the family of graphs which consist of triangles
sharing a vertex. Note that K3 ∈ K3.

Proof. Suppose by contradiction that G does not belong to K3,G is A-connected, and G contains a
d-vertex v adjacent to d 2-vertices. Let N(v) = {v1, . . . , vd}. We consider two cases according as
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A = Z4 or A = Z2 × Z2. Since G ∉ K3, there is at least one vertex u ≠ v not in N(v). Hence we can
always choose a boundary function b ∈ Z(G, A)with desired values for the vertex v and its neighbors.

Case 1: A = Z4.
If d is even, let b ∈ Z(G, A) such that b(v) = 1 and b(vi) = 2 for 1 ≤ i ≤ d; if d is odd, let b ∈ Z(G, A)

such that b(v) = 2 and b(vi) = 2 for 1 ≤ i ≤ d. Then there is no nowhere-zero f : E(G) → A
with ∂ f = b. Otherwise assume that there is a nowhere-zero f : E(G) → A with ∂ f = b. Since
b(vi) = 2, f (vvi) must be 1 or 3, which are odd numbers. Thus if d is even, then

d
i=1 f (vvi) must

be even, and hence
d

i=1 f (vvi) ≠ 1 = b(v); if d is odd, then
d

i=1 f (vvi) must be odd, and henced
i=1 f (vvi) ≠ 2 = b(v). Therefore, G is not A-connected, a contradiction.
Case 2: A = Z2 × Z2.
If d is even, let b ∈ Z(G, A) such that b(v) = (1, 1) and b(vi) = (0, 1) for 1 ≤ i ≤ d; if d is odd, let

b ∈ Z(G, A) such that b(v) = (0, 1) and b(vi) = (0, 1) for 1 ≤ i ≤ d. Then there is no nowhere-zero
f : E(G) → Awith ∂ f = b. Otherwise assume that there is a nowhere-zero f : E(G) → Awith ∂ f = b.
Since b(vi) = (0, 1), f (vvi)must be (1, 0) or (1, 1)which has 1 as its first component. Then if d is even,
the first component of

d
i=1 f (vvi) must be 0, and cannot be the first component of b(v) which is 1;

if d is odd, then the first component of
d

i=1 f (vvi) must be 1, and cannot be the first component of
b(v) which is 0. Therefore, G is not A-connected, a contradiction. �

Let π = (d1, d2, . . . , dn) be a nonincreasing positive integer sequence. Define π ′
= (d1 − 1, d2 −

1, . . . , ddn − 1, ddn+1, . . . , dn−1) = (d′

1, d
′

2, . . . , d
′

n−1) where d′

1 ≥ d′

2 · · · d′

n−1. π
′ is said to be the

residual sequence obtained by laying off dn from π .

Lemma 13 (Kleitman and Wang [8], and Hakimi [5]). π is graphic if and only if π ′ is graphic.

Lemma 14. Let π = (d1, d2, . . . , dn) be an integer sequence with n − 1 ≥ d1 ≥ d2 · · · ≥ dn ≥ 2 and
n ≥ 3. If σ(π) = d1 + d2 + · · · + dn = 3n − 3 is even, then π is graphic.

Proof. Suppose by contradiction that the lemma is not true. Let π = (d1, . . . , dn) be a
counterexample with n as small as possible. Let ni be the number of i-elements of π for each i = 2, 3.
Then dn−n2 ≥ 3 and n2 ≥ 3 since d1 + d2 + · · · + dn = 3n − 3. If n = 3, then π = (23) which is
graphic, a contradiction. Hence n ≥ 4. Since 3n − 3 is even, we have that n is odd and thus n ≥ 5.
Claim 1. d1 ≥ 4 and d2 ≤ n − 3.
Proof of Claim 1. Since n ≥ 5, we have 3n − 3 > 2n. Hence d1 ≥ 3. If d1 = 3, then π = (3n3 , 2n2).
Then σ(π) = 3n3 + 2n2 = 3n − n2. Since σ(π) = 3n − 3, we have n2 = 3. Note that n3 is even. Let
n3 = 2t . We can construct a realization of π as follows: start with a triangle xyz; replace the edge xy
with a path xx1x2 · · · xty and the edge xz with a path xy1y2 · · · yty; and then add an edge xiyi for each
i = 1, 2, . . . , t . This contradicts the choice of π . This proves d1 ≥ 4.

Now we prove d2 ≤ n − 3. Otherwise assume d2 ≥ n − 2. Then d1 ≥ d2 ≥ n − 2. If d1 ≥ n − 1,
then σ(π) ≥ d1 + d2 + 2(n − 2) ≥ (n − 1) + (n − 2) + 2(n − 2) = 4n − 7 > 3n − 3 since n ≥ 5,
a contradiction. Hence d1 = d2 = n − 2. Since d1 ≥ 4, we have n − 2 ≥ 4 and thus n ≥ 6. Hence
σ(π) ≥ d1 + d2 + 2(n − 2) ≥ 2(n − 2) + 2(n − 2) = 4n − 8 > 3n − 3 since n ≥ 6, a contradiction.
This completes the proof of Claim 1. �

Consider the sequence π1 = (d1 − 2, d2, . . . , dn−n2 , 2
n2−2). Reorder the terms of π1 in

nonincreasing order as π1 = (d∗

1, . . . , d
∗

n−2). Since, by Claim 1, d1 ≥ 4 and d2 ≤ n − 3, we have
d∗

1 ≤ n−3 = (n−2)−1 and d∗

n−2 ≥ 2. Note that σ(π1) = σ(π)−6 = 3n−3−6 = 3(n−2)−3. By
the choice of π, π1 is graphic. Let G be a realization of π1 and v be a vertex in Gwith dG(v) = d1 − 2.
Let xyz be a triangle disjoint from G. We can obtain a realization of π by identifying x with v. This
contradicts the choice of π . This contradiction completes the proof of Lemma 14. �

The construction in the following lemma is crucial in the proof of Theorem 5.

Lemma 15. Suppose that xuvx is a triangle. Let t be an nonnegative integer. If we replace xu with a path
xu1u2 · · · utu, replace xv with a path xv1v2 · · · vtv and join uivi for 1 ≤ i ≤ t, then the resulting graph G
is A-connected with |A| ≥ 4.
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Proof. Clearly, xu1v1x is a triangle in G and a triangle is A-connected. Recursively contracting a
triangle, the resulting graph is K1 which is A-connected. By Lemma 8(b), G is A-connected since a
triangle is A-connected. �

3. Lower and upper bounds for ex(n, Z3)

Proof of Theorem 2. We first prove the lower bound. Let G be a Z3-connected simple graph with
n ≥ 6. Then δ(G) ≥ 2. By Corollary 10, G contains no adjacent 2-vertices. Thus if G has a 2-vertex,
then we can recursively remove 2-vertices and the resulting graph is Z3-connected if and only if the
original one is. Note that on removing one 2-vertex, the total degree sum decreases by 4. When there
is no 2-vertex, the resulting graph hasminimumdegree at least 3 since G is simple. Therefore the total
sum of degrees of the original graph is at least 3n and it has at least 3n/2 edges.

To show the upper bound, we construct a Z3-connected graph with n vertices and 2n− 2 edges for
each n ≥ 6 as follows.

LetG be the evenwheelwith n vertices if n is odd and otherwise letG be the graph obtained from an
even wheel with n − 1 vertices by adding one new vertex and joining this new vertex to two vertices
of the wheel. Clearly |E(G)| = 2n − 2 and by Lemmas 8(c) and 9, G is Z3-connected. �

Remarks. Many other Z3-connected graphs with n vertices and exactly 2n − 2 edges can be
constructed from a W4 by recursively adding a new vertex and joining the new vertex to two other
vertices already in the graph until the graph has n vertices.

4. Lower and upper bounds for ex(n,A) with |A| ≥ 4

Proof of Theorem 3. We can construct a graph G with n ≥ k − 1 vertices for n − 1 ≡ t(mod k − 2)
as follows: starting with a (k−1)-cycle, grow the graph by recursively attaching a (k−1)-path to the
graph already obtained until the graph has n − t vertices. If t ≠ 0, attach a (t + 1)-path to the above
graph. Note that whenwe attach the path to the graph, the two ends of the path can be identifiedwith
the same vertex in the graph. Clearly, |E(G)| =

(n−1)(k−1)
k−2 if t = 0 and |E(G)| =

(n−1−t)(k−1)
k−2 + t + 1 if

1 ≤ t ≤ k − 3. By Lemmas 8(a), 11, and 8(b), G is A-connected. �

Proof of Theorem 4. The upper bound is a special case of Theorem3.We only need to prove the lower
bound.

Suppose by contradiction that ex(n, A) < (4n − 1)/3. Let G be a minimal counterexample with
respect to n. Then G is A-connected and


v∈G d(v) ≤ 2 ex(n, A) < (8n − 2)/3.

Claim 1. G contains no adjacent 2-vertices and thus the set of all 2-vertices is an independent set of G.
Proof of Claim 1. Suppose that G has two adjacent 2-vertices v1, v2 such that xv1v2y is an induced path
of G. Let G∗

= G − {v1, v2}. Then
v∈G∗

dG∗(v) <
8n − 2

3
− 6 <

8(n − 2) − 2
3

=
8|V (G∗)| − 2

3
.

Since G is A-connected, by Lemma 11, G∗ is A-connected. Therefore G∗ is a smaller counterexample, a
contradiction. Hence no two 2-vertices are adjacent and thus the set of all 2-vertices is an independent
set. This completes the proof of Claim 1. �

Claim 2. The set of (≥3)-vertices of G induces a connected subgraph G1.
Proof of Claim 2. Otherwise, let G∗ be a maximal connected subgraph of G induced by some (not all)
(≥3)-vertices. Contract G∗ and all the resulting 2-cycles, and let v∗ be the new vertex. Then we obtain
a simple graph G′ and all the neighbors of v∗ have degree 2 by the choice of G∗. By Claim 1, G′

∉ K3.
By the definition of A-connectivity, the A-connectivity is closed under contraction. Then G′ should be
A-connected. But this is impossible by Lemma 12. �

Now, for any v ∈ V (G) \ V (G1), we have dG(v) = 2 and its two neighbors are in V (G1). Let
n1 = |V (G1)| and n2 be the number of 2-vertices of G. Then, n = n2 + n1.
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By Claim 2, G1 is connected. Let T1 be a spanning tree of G1 and ne = |E(G1) \ E(T1)|. Then ne ≥ 0.
Since each 2-vertex has two neighbors in T1, we have

v∈V (G)

dG(v) =


v∈V (T1)

dT1(v) + 4n2 + 2ne

= 2(n1 − 1) + 4n2 + 2ne

= 2(n1 + n2) + 2(n2 + ne) − 2
= 2n + 2(n2 + ne) − 2. (1)

Since dG(v) ≥ 3 for any v ∈ V (T1), we have

2n2 ≥ 3n1 −


v∈V (T1)

dT1(v) − 2ne

= 3n1 − 2(n1 − 1) − 2ne

= n1 − 2ne + 2
≥ n1 − 3ne + 2. (2)

Therefore we have 3n2 + 3ne ≥ n1 + n2 + 2 = n + 2 and thus n2 + ne ≥
n+2
3 . By Eq. (1), we have

v∈V (G)

dG(v) ≥ 2n +
2(n + 2)

3
− 2 =

8n − 2
3

,

a contradiction to the assumption of the theorem. This completes the proof of Theorem 4. �

5. Graphic sequences with an A-connected realization

Now we are about to prove Theorem 5.

Proof of Theorem 5. By way of a contradiction we assume that π = (d1, d2, . . . , dn) is a smallest
counterexample to the statement with respect to n. Recall that π ′

= (d1 − 1, d2 − 1, . . . , ddn −

1, ddn+1, . . . , dn−1) is the residual sequence obtained by laying off dn from π . Note that when dn ≥ 2,
if π ′ has an A-connected realization, then π does too.
Claim 1. dn = 2, d2 ≥ 3, and σ(π) = 3n − 3.
Proof of Claim 1. If dn ≥ 4, then each term ofπ ′ is at least 3 and hence σ(π ′) ≥ 3(n−1) ≥ 3(n−1)−3.
If dn = 3, then σ(π) ≥ ndn ≥ 3n. Thus σ(π ′) = σ(π) − 2dn ≥ 3n − 6 = 3(n − 1) − 3. Thus, if
dn ≥ 3, then π ′ satisfies the assumption of the theorem. By the choice of π, π ′ has an A-connected
realization and so has π , a contradiction. This proves dn = 2.

Now we prove d2 ≥ 3. Otherwise assume that d2 = 2. Then π = (d1, 2n−1). Since σ(π) =

d1 + 2(n − 1) ≥ 3n − 3, we have d1 = n − 1 and d1 is even. Clearly, the graph G obtained from n−1
2

triangles sharing a common vertex is a realization of π . Since each edge of G is contained in a triangle
and a triangle is A-connected, G is A-connected, a contradiction.

Finally we show that σ(π) = 3n − 3. Otherwise assume that σ(π) ≥ 3n − 2. Hence σ(π ′) =

σ(π) − 4 ≥ 3n − 6 = 3(n − 1) − 3. Since d2 ≥ 3, π ′ satisfies the assumption of the theorem. By the
choice ofπ, π ′ has an A-connected realization and so hasπ , a contradiction. Therefore σ(π) = 3n−3.
This completes the proof of Claim 1. �

Claim 2. d1 ≥ 4 and n ≥ 5.
Proof of Claim 2. By way of a contradiction we assume that d1 ≤ 3. By Claim 1, we have d1 ≥ d2 ≥ 3.
Hence d1 = d2 = 3 andπ = (3n3 , 2n2)whereni is the number of i-elements ofπ . Sinceσ(π) = 3n−3,
we have n2 = 3. Note that n3 is even. Let n3 = 2t . We can construct a realization of π,G, as follows:
start with a triangle xyz; replace the edge xy with a path xx1x2 · · · xty and the edge xz with a path
xy1y2 · · · yty; and then add an edge xiyi for each i = 1, 2, . . . , t . By Lemma 15, G is A-connected, a
contradiction. Therefore, d1 ≥ 4.

Since n ≥ d1 + 1, we have n ≥ 5. �
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Claim 3. d2 ≤ n − 3.
Proof of Claim 3. Suppose the contrary: that d2 ≥ n − 2. Since dn ≥ 2, we have σ(π) = 3n − 3 ≥

d1 + d2 + 2(n − 2) ≥ (n − 2) + (n − 2) + 2(n − 2) = 4n − 8. Then n ≤ 5. By Claim 2, we have
n = 5. Therefore d1 = n−2 = 3, a contradiction to Claim 2. This contradiction completes the proof of
Claim 3. �

The final step: Consider the sequence π1 = (d1 − 2, d2, . . . , dn−n2 , 2
n2−2). Reorder the terms of π1

in nonincreasing order asπ1 = (d∗

1, . . . , d
∗

n−2). By Claim 2 and 3, d1 ≥ 4 and d2 ≤ n−3. Thus we have
d∗

1 ≤ n − 3 = (n − 2) − 1 and d∗

n−2 ≥ 2. Note that σ(π1) = σ(π) − 6 = 3n − 3 − 6 = 3(n − 2) − 3.
By Lemma 14, π1 is graphic. Since π1 satisfies the assumption of the theorem, by the choice of π, π1
has an A-connected realization. Let H be an A-connected realization of π1 and v be a vertex in H with
dH(v) = d1 − 2. Let xyz be a triangle disjoint from H . We can obtain a realization of π , denoted by G,
by identifying x with v. Since H is A-connected and a triangle is A-connected, G is A-connected. This
contradicts the choice of π . This contradiction completes the proof of Theorem 5. �
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